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Abstract. We present a model describing the competition between information transmission and decision
making in financial markets. The solution of this simple model is recalled, and possible variations discussed.
It is shown numerically that despite its simplicity, it can mimic a size effect comparable to a crash localized
in time. Two extensions of this model are presented that allow to simulate the demand process. One of
these extensions has a coherent stable equilibrium and is self-organized, while the other has a bistable
equilibrium, with a spontaneous segregation of the population of agents. A new model is introduced to
generate a transition between those two equilibriums. We show that the coherent state is dominant up
to an equal mixing of the two extensions. We focus our attention on the microscopic structure of the
investment rate, which is the main parameter of the original model. A constant investment rate seems to
be a very good approximation.

PACS. 02.50.Le Decision theory and game theory – 02.50.Ng Distribution theory and Monte Carlo studies
– 05.65.+b Self-organized systems

1 Introduction

The first microscopic model of financial markets goes back
to Bachelier in 1900 [1], whose work is based on the hy-
pothesis of independent variations modifying the value of
the prices. He obtained a price that follows a random-walk,
a disappointing result for those trying to make predictions
on financial markets. However, there is now substantial
empirical evidence that shows that price variations do not
have a random-walk behaviour. In particular, the distri-
bution of returns P (r), a return being the relative price
change in a given time interval, has been the subject of nu-
merous empirical investigations. Instead of the Gaussian
distribution expected from Bachelier model, different au-
thors suggested that P (r) behaves as an exponential [2,3]
or a power-law [4–9] for large values of r. No consensus has
been reached for the exact expression of P (r), if there is
one, but it is now widely accepted that agents are not mak-
ing decisions independently. Even if the panel of choices
for investment opportunities is nearly infinite, agents tend
to react to some common information, or at least, agents
can be grouped by clusters of agents sharing the same in-
formation. The existence of these herds of agents is the
basis of the model introduced by Egúıluz and Zimmer-
mann [10] (EZ model), which is a dynamical version of a
previous model by Cont and Bouchaud [11]. In the next
section, we briefly describe the EZ model and detail its
stationary solution obtained in [12]. We show numerically
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that a finite size effect with most of the agents buying or
selling simultaneoulsy is present, a mechanism similar to
a crash [10].

An important parameter in the EZ model is the rate of
investment a, which represents the probability of making
an investment, 1 − a being the probability that instead
information propagates. In any real situation, we expect
a to be small and it can be shown that in the limit a→ 0,
the model is in a critical state, with groups of investors of
all sizes for infinite systems. In [13], a mechanism driving
the system towards this critical state is proposed, based
on a democratic decision process where every agent in a
group takes part in the decision process. It is also shown
that a dictatorship decision process with one agent making
decision for a whole group leads to less volatile markets.
These particular extensions of the model are presented
in Section 3. In the same section, we introduce a mixed
model, where the decision processes can either be dictator-
ship with a probability b or democratic with a probability
1− b. Numerically, it is shown that the properties of the
model are democratic for b less than 0.5. The average in-
vestment rate stays to a very low value. When b increases
from 0.5 to 1.0, a continuous transition from democratic
to dictatorship is underlined, with the average fragmenta-
tion rate increasing from a value close to 0 to a value close
to 0.5. For b ≈ 0.8, the effects of both types of decision
processes cancel each other.

In the original EZ model, the fragmentation rate a is
a constant with a value chosen and fixed during a simu-
lation. A more general approach of the problem suggests
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that a should be considered as a function of the size of the
clusters of agents, which is the only difference between the
groups of agents. In Section 3, we investigate numerically
the functional dependence of a as generated by the demo-
cratic and dictatorship extensions of the EZ model.

2 The EZ model

The Egúıluz and Zimmermann model [10] is one of the
simplest models you could imagine for herding. Agents
are grouped by clusters of agents sharing the same infor-
mation, and there is no information available at the be-
ginning of the simulation. At each time step, one agent is
chosen at random. With a probability a, he decides that
it is the right time to invest and triggers all the agents
sharing his information to invest with him. The cluster
this agent belongs to is then fragmented into independent
agents having no information to share. With a probability
1−a, the chosen agent decides that he would like to know
a bit more before making an investment. Another agent is
chosen at random and the two agents share their informa-
tion. Hence, the clusters of both agents coagulate to form
a single larger cluster. In other words, at each time step
a cluster is fragmented with probability a, or two clusters
coagulate with a probability 1−a. The number of agents,
N0, is fixed.

The investment decision can either be buy or sell with
equal probability. No feedback according to previous de-
cisions has been implemented in the basic model, but it is
quite easy to devise three choices models, buy, sell or share
information, with memory [15]. When a cluster of agents
decides to invest, it modifies the demand and supply equi-
librium, which in turn affects the price of the exchanged
commodity. As already mentioned, the price return r is
the relative price variation on a given time interval. The
returnR here is defined to be the relative number of agents
buying or selling at a particular time, taken with its sign.
By convention, if agents are buying, the return is positive
and it is negative if agents are selling. Hence, if ns is the
number of clusters of size s, the probability to have a re-
turn R of size s/N0 is given by sns/N0. R is related to
the price change r, usually using a logarithmic variation
like [11]

lnP (t)− lnP (t− 1) =
R

λ
(1)

where P (t) is the price at time t and λ the market liquidity.
λ expresses the sensivity of a price to modifications in the
supply and demand process. Alternatively, some authors
consider that [14]

P (t)− P (t− 1) = λ
√
R. (2)

In either case, the cluster size distribution ns describes
the supply and demand variations and is the quantity of
interest.

A master equation for the number ns(t) of clusters of
size s at time t can be written as [12]

∂ns
∂t

= −asns +
(1− a)
N0

s−1∑
r=1

rnr(s− r)ns−r

−2(1− a)sns
N0

∞∑
r=1

rnr (3)

∂n1

∂t
= a

∞∑
r=2

r2nr −
2(1− a)n1

N0

∞∑
r=1

rnr. (4)

Note that one time step in the continuous description is
chosen to correspond to one attempted update per agent
in the numerical simulation. In the first equation, the first
term on the right hand side describes the fragmentation
of a cluster of size s, the second term, the coagulation of
two clusters to form a cluster of size s and the last term,
the coagulation of a cluster of size s with another cluster.
The second equation is the equation for the clusters of size
one, with the first term on the right hand side describing
the fragmentation of any clusters, which creates clusters
of size one, while the second term is the coagulation of a
cluster of size one with another cluster.

The previous set of equations can be solved [12] to
obtain a size distribution

ns
N0
∼
(

4(1− a)
(2− a)2

)s
s−5/2. (5)

The model displays a power-law distribution ns ∼ s−τ of
exponent τ = 5/2, with an exponential cut-off. The expo-
nential correction vanishes in the limit a→ 0. All the other
stationary properties of the model can be calculated, like
the moments of the distribution [12] or the connectivity
c, defined as the average number of links per agent. The
time average c of the connectivity, for instance, is equal to

c = 2
(

2− a
1− a ln(2− a)− 1

)
. (6)

This result is obtained using the fact that a cluster of size
s always has s − 1 links, or 2(s − 1) links per agent. In
Figure 1, we present the cluster size distribution ns ob-
tained for more than 50 numerical simulations of 106 time
steps each, for a system with N0 = 104 agents and a frag-
mentation rate a = 0.01. The continuous line is a guide to
the eye for a power-law of exponent τ = 5/2. Taking the
limit a→ 0 generates a time scale separation between the
very quick propagation of information and the very slow
process of decision making. Note that this limit of low
values of a does not mean that, paradoxically, the model
is a realistic illustration of financial markets only when
the agents do not invest. It simply means that in any real
situation, an agent will always try to gather information
before making a decision. Through this information col-
lection, agents are becoming correlated with each other.
The limit of low values for a implies that the building of
correlations is quicker than the decision process. It allows
the existence of clusters of all sizes in infinite systems.
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Fig. 1. Cluster size distribution ns/N0 for the EZ model for
N0 = 104 (•) agents investing with a probability a = 0.01,
after t = 106 time steps. The continuous line is a guide to the
eyes for a power law of exponent τ = 5/2.

However, for any finite size system, clusters of the order
of the system size can be created when a is tuned to a low
value. This corresponds to the formation of a bubble, and
when this cluster of agents decides to invest, it modifies
drastically the supply and demand process, like when a
bubble bursts. This can be associated with a crash phe-
nomenon [10], in the sense that a large number of agents
are acting cooperatively due to the information they share.
Note that for the choice of parameters, the largest events
involve clusters of order 4× 103 agents, not shown in Fig-
ure 1. However, we have to stress that in the EZ model,
the agents are either completely correlated if they are part
of the same cluster, or totaly independent otherwise. The
exact relation between agents, with some time delays, or
a feedback to the generated price is not present, and the
whole event that we associate to a crash is strictly local-
ized in time. As a result, we use the term crash to describe
a massive modification of the bid/offer equilibrium by a
coordinated movement of a large number of agents, but
these crashes are lacking the dynamics of real crashes.
For instance, no precursory pattern, like the presence of
correlations between successive large fluctuations [16–18],
is expected here. An interesting model that concentrate
on crash modeling can be found in [19]. To illustrate the
high frequency of large events, Figure 2 shows the relation
between the time interval ∆t between two events of size
s as a function of the size of these events, for the same
choices of the parameters. The continuous line is a guide
to the eye for a power-law of exponent 3/2, which is the
expected relation if the system was infinite. As can be in-
fered from Figure 2, the time interval between two events
of size 4× 103 should be larger than 107 simulation time
steps, ten times the actual length of the simulations.

The relation between the value τ = 5/2 for the ex-
ponent of the cluster size distribution and the value of
the exponent for P (r), the price return distribution is not
straightforward. It is empirically found that P (r) ∼ 1/rβ
for large r, with an exponent β in the range 2 to 4 [4–9].
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Fig. 2. Time difference ∆t between two events of size s, as
a function of s. The simulation ran for t = 106 time steps,
with N0 = 104 agents and a = 0.01. The continuous line is a
guide to the eye for a power-law of exponent 3/2. Note that
for s > 200, large events are clearly below the continuous line.

The latest estimates favour a value of β close to 4, which
means that neither of the proposed relations (1) and (2)
are convenient. This could be due to a wrong assumption
for the relation linking the price return and the demand
and supply equilibrium, but more likely, it is related to
the simplicity of our model. For instance, agents could be
acting similarly because they use the same broker and, un-
less they are loosing a lot of money, they will not change
broker after each transaction. Hence, an improvement of
the model could be to change the fragmentation or aggre-
gation process. One extension that we considered was that
m agents could exchange information at each time step,
instead of just two. So, at each time step, with a proba-
bility a, one cluster is fragmented and with a probability
1 − a, m clusters coagulate. However, it was shown that
the exponent of the power-law distribution is not affected
by such a change [12].

The EZ model is a function of only two parameters, the
number of agents N0 and the investment rate a. Keeping
N0 fixed is unrealistic as the number of investors on finan-
cial markets is increasing. In real situations, we expect the
change in the number of agents to be much slower than
the trading rate so that the previous model can be consid-
ered in its stationary state with an increasing value of N0

as time goes on. If the changes in the number of agents
and the trading activities were on the same time scales, we
should add a source term in equation (4). This would how-
ever prevent the system from reaching a stationary state,
and time dependent equations would have to be consid-
ered. A time-dependent solution is unfortunately still not
available.

For the parameter a, it is assumed in the basic model
that the investment rate a is a constant. As agents are cho-
sen at random, it suggests that bigger groups of agents
have a higher rate of investment, because they are se-
lected more often, that is, the effective investment rate
is as rather than a. An interesting generalization of the
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Fig. 3. Probability distribution Q(p) of the characters p of the agents for (a) the democratic and (b) the dictatorship model
for N0 = 104 agents, after t = 106 time steps. The range is R = 0.1.

model would allow a to vary, and as the only difference
between the groups of investors is their sizes, a should
be a function of the cluster size s only. Work along these
lines is in progress. A possible functional dependence of a
is discussed at the end of the next section.

3 The democratic and dictatorship models

The previous model is very simple, with only two parame-
ters, the number of agents N0 and the fragmentation rate
a. In the previous section, we discussed possible variations
around these two parameters, allowing N0 to vary or tak-
ing a as a function of s, the size of the cluster of agents.
However, if the origin of N0 is clear, it is interesting to
consider the mechanism that could generate a global pa-
rameter like a. In this section, we consider a model where
each agent is given a microscopic parameter pi, that rep-
resents her individuality. Agents interact with each other
according to their pi’s, whose value can change after in-
teraction. We will show that this allows us to generate a
macroscopic parameter like a. For simplicity, we consider
that each pi is a random number chosen from a uniform
distribution between 0 and 1.

The principle of the model is very similar to the prin-
ciple of the EZ model. Agents are grouped by clusters of
agents sharing the same value of pi. At each time step,
two agents i and j, with associated numbers pi and pj
respectively, are selected at random. With a probability
aij = |pi − pj|, agents i decides to invest and triggers the
action of his cluster. That is, all these agents are given new
random number from the range [pi −R, pi +R], where R
is a fixed number between 0 and 0.5. It corresponds to a
synchronised investment made by people sharing the same
information, a purchase or a sale with equal probability.
With a probability 1− aij , i and j exchange their infor-
mation, and their clusters coagulate. All agents belonging
to the clusters of i and j are given the same new number
pij . We consider two variations of the model, a democratic

version where pij = (pi + pj)/2 and a dictatorship version
where pij = pi.

We identify the parameter pi to the character of an
agent, or rather to the way an agent is perceived or is per-
ceiving the market. Agents with similar values of pi’s are
more likely to be making similar decisions, so that when
they meet, the probability that they decide to exchange
information is high. According to their history of aggre-
gation and fragmentation, agents are learning, and they
receive a value of pi which is close to the value they had
when they were in a cluster. The two different processes
of aggregation refer to two different type of decision pro-
cesses, an active one where each agent is taking part in
the decision making, which we decide to call a democratic
process, and a passive process where all the agents rely on
one of them to make decision, which we call a dictatorship
process.

For both models we made numerical simulations to in-
vestigate the distributions Q(p) of the pi’s, that is, Q(p)dp
is the relative number of agents associated with a value of
pi inside (p, p + dp). The result for Q(p) for the demo-
cratic model is presented in Figure 3a, for a system with
N0 = 104 agents and a range of R = 0.1. As the process
of aggregation consists in averaging over the values of the
pi’s, the system is driven towards a coherent state where
most of the agents have a value of pi spread around an
average value p, the amplitude of the spreading being re-
lated to the value of the range R. The exact value of p is
meaningless as it originates from the averaging over the
chosen initial distribution. Moreover, as the averaging is
not equally weighted for all agents, it can be strongly his-
tory dependent [13]. We define a to be the average value of
aij over i and j. It corresponds to the macroscopic value a
of the EZ model. As most pi’s are close to p, a is close to
0 in the democratic model. Hence, the democratic model
self-organizes into a coherent state where clusters of agents
of all sizes exist, with a time scale separation between in-
formation transmission and investment. In Figure 3b, we
present the results for the dictatorship model for N0 = 104

agents and a range R = 0.1. A spontaneous segregation
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Fig. 4. Probability distribution Q(p) of the characters p of the agents for the mixed model for (a) b = 0.1 (•), 0.5 (◦), 0.6 (4)
and (b) b = 0.8 (•), 0.9 (�). All simulations where done for N0 = 104 agents and lasted t = 106 time steps. The range is R = 0.1.
Simulations for b less than 0.5 all give similar results to b = 0.1.

into two equal sized populations happens, with one half
of the agents associated with a value of pi around a value
p(1) close to 0 and the other half associated with a value
p(2) close to 1. The origin of this segregation is less obvi-
ous than the origin of a common value of p for the demo-
cratic model. Due to this segregation into two populations,
the value of a for the dictatorship model is approximately
equal to 0.5. As a result, the dictatorship model displays
a level of organization, but is not self-organized as the
system is not in its critical state. It also means that the
exponential cut-off of the size distribution present in equa-
tion (5) is important and prevents large clusters of agents
to develop. Hence, the dictatorship model generates less
volatile markets than the democratic model.

A natural extension of the previous models consist in
a mix of the democratic and dictatorship models, with
a probability b of having dictatorship associations, while
democratic associations happen with a probability 1 − b.
In this mixed version, some agents are passive, relying on
another agent to make decisions for them, while others are
active and make decisions for several agents. The result-
ing distributions Q(p) of pi’s are presented in Figure 4a
for b = 0.1, b = 0.5 and b = 0.6 and Figure 4b for b = 0.8
and b = 0.9. As a reminder, b = 0 is the democratic model
and was presented in Figure 3a, while b = 1 is the dicta-
torship model, shown in Figure 3b. All simulations where
performed over 106 time steps, with N0 = 104 agents, a
range R = 0.1 and a initial uniform distribution between
0 and 1 for Q(p). The democratic aggregation process is
dominant for all value of b less than 0.5 as seen for b = 0.1.
So, for b less than 0.5, the stable equilibrium of the sys-
tem is a coherent state. From b = 0.5, the competition
between democratic and dictatorship associations tends
to compensate each other, which flattens the distribution
Q(p). A flat distribution is achieved for b ≈ 0.8, as seen
in Figure 4b. Also in Figure 4b, it can be seen that for
b higher than 0.8, the dictatorship aggregation process is
dominant, with a clear segregation of the population.

Another way of examining the transition consists in
measuring the distribution N(|pi − pj |), which is defined
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Fig. 5. Probability distribution N(∆p) of selecting two agents
at random with characters pi and pj such as ∆p = |pi − pj|.
Each simulation is done for N0 = 104 agents, R = 0.1 and
laster t = 106 time steps. The choices for b are b = 0 (demo-
cratic, •), b = 0.8 (×) and b = 1 (dictatorship, �). The results
for b = 0 have been divided by 5 for ease.

to be the frequency of appearance of a given difference
|pi−pj|. Remember that the average value of |pi−pj| over
all agents corresponds to the average fragmentation rate a.
By looking at the distribution N(|pi− pj|), we investigate
the microscopic structure of the fragmentation rate. This
distribution is related to the distribution Q(p) by

N(∆p) =
∫ 1

0

∫ 1

0

dp1dp2Q(p1)Q(p2)δ(|p1 − p2| −∆p),
(7)

where we use the notation |pi − pj| = ∆p. In Figure 5,
we present the distribution N(∆p) for b = 0, the demo-
cratic model, b = 0.8 and b = 1.0, the dictatorship model.
The simulations were performed during 106 time steps for



624 The European Physical Journal B

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

a
variance

a 
(b

)

b

democratic

Fig. 6. Average fragmentation rate a (•) as a function of b.
For b less than 0.5, the system converges towards a coherent
state with a close to 0, which is denoted by the shaded area in
the figure. The variance of a is also presented (�) and is of the
same order than a. All simulations were performed during 106

time steps for systems of N0 = 104 agents and a range R = 0.1.

N0 = 104 and a range R = 0.1. Note that for ease of
presentation, we have divided the results for b = 0 by 5.
From b = 0 to b ≈ 0.8, the distribution N(∆p) is the
positive half of a Gaussian distribution centered at the
origin. The spread of this Gaussian stays constant for b
less than 0.5 and starts to increase with b for b ≥ 0.5.
At around b = 0.8, the distribution becomes a straight
line, in agreement with a flat distribution for Q(p). In this
case, N(∆p) = 2(1 − ∆p). For b larger than 0.8, N(∆p)
has two maxima, one at ∆p = 0 and one at ∆p close to 1,
as can be seen for b = 1.0 in Figure 5. The second maxi-
mum tends to 1 as R is decreased towards 0. From these
distributions, the average value of the fragmentation rate
a can be infered and is presented in Figure 6 as a function
of b.

For b < 0.5, a stays nearly constant and close to 0,
going to 0 as theR is decreased. This part of the parameter
space is referred to as the democratic phase in Figure 6, in
agreement with the existence of a coherent state. At b =
0.5, a increases towards a value close to 0.5 at b = 1. Also
presented in Figure 6 is the variance of a. It is important
to note that the variance of a is always of the order of
a itself. For small values of b, this is because a and its
variance are both of the order of R, while for b close to
1, this is because the distribution N(∆p) has to maxima,
one in zero and one in one, not just one maximum in 0.5.

The transition outlined here, from a coherent state to
a segregated population, is very similar to the transition
investigated in [20]. The average fragmentation rate can
be associated to the order parameter of the transition.
Unlike reference [20], our numerical results suggest that
the transition is second-order, but further investigations
are required.

As discussed at the end of the previous section, the EZ
model is arbitrary in its functional choice for a, taking it

to be a simple constant. On the contrary, in the demo-
cratic and dictatorship models, a macroscopic parameter
a is generated by the interaction between agents. We in-
vestigate numerically the parameter a of the democratic
and dictatorship models, seen as a function of the cluster
sizes, to question the functional choice of the EZ model.
The variation of a(s) in the democratic model is presented
in Figure 7a for N0 = 104 agents and a range R = 0.1.
The simulation ran for 107 time steps. It can be seen that
a(s) stays very low for s less than around 2000, while the
larger events have just happened one or two times. Hence,
they are not statistically relevant, but it can be seen that
most of the large clusters selected have not broken down,
which implies a very low value for a. The inset of Figure
7a presents a zoom of the figure for the lowest sizes and
it can be seen that for s less than around 20, the frag-
mentation rate is particularly low. a then stabilizes at a
value around 0.025, with large fluctuations that are in-
creasing as s is increased. In Figure 7b is presented a as a
function of s for the dictatorship model for a simulation of
107 time steps, with N0 = 104 agents and a range R = 0.1.
For s less than 10, a is very low, while stabilizing around
a ≈ 0.42 from s ≈ 10 to s ≈ 50. For s > 50, less and less
event are recorded, leading to huge fluctuations of a. As
a conclusion, if the democratic or the dictatorship aggre-
gation processes are representative of the mechanism that
generates a macroscopic parameter a in the EZ model,
taking a as a constant seems to be a good approximation.
A more elaborate model should consider that a starts from
a very low value for s = 1, then reaches a stationary value
for small s and starts to fluctuate around this value as s
increases, the fluctuations also increasing with s.

4 Conclusions

The EZ model has been presented as a simple model to
mimic the competition between information transmission
and decision making in financial markets. Due to shared
information, agents do not act independently and make
group decisions, a phenomenon known as herding. These
group decisions can have a strong impact on the market,
modifying drastically the supply and demand equilibrium
and, ultimately, the price. The exact stationary solution
of the EZ model is obtained in the limit of infinite size
systems. When there is a time scale separation between
the quick information transmission and the slow decision
making, the model is in its critical state, with groups of
agents of all sizes. The size distribution of the groups of
agents is a power-law of exponent 5/2, with an exponential
cut-off. For finite size systems close to the critical state,
clusters of agents can merge to induce large events, a phe-
nomenon similar to a crash. We show numerically that
these events happen far more often than expected from
the solution for infinite size systems. However, due to the
dynamics of the system, the term crash refers here to the
cooperative behaviour of agents, not to the dynamics of
real crashes. For instance, no crash precursor patterns can
be identified.
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Fig. 7. Average fragmentation rates of clusters of size s as a function of s for (a) the democratic and (b) the dictatorship
models. The inset in Figure 7a allows us to appreciate the behaviour of a for low values of s. We simulated systems of N0 = 104

agents with R = 0.1 during 107 time steps.

The previous model suffers from a dependence on a
global parameter a which represents the investment rate.
This parameter is supposed to be the same for all agents,
which is very unlikely, and is externally controled, another
unrealistic feature. Two extensions of the EZ model are
presented, a democratic version where all agents take part
in the decision process, and a dictatorship version, where
one agent is making the decision for several others. Both
extensions display a level of organization, with the demo-
cratic model driving the system into its critical state, while
the dictatorship model displays a spontaneous segregation
in the population of agents. The average investment rate
is close to 0 in the democratic model, close to 0.5 in the
dictatorship model. We introduced in this paper a mixed
version, with a probability b of a dictatorship decision, and
1 − b of a democratic decision. This allows us to induce
a transition from a coherent state, which corresponds to
the democratic model, to a bistable state, the dictator-
ship model. The transition, which happens for b close to
0.5, seems to be second-order, with the average investment
rate as the order parameter.

Another arbitrary feature of the EZ model is that the
investment rate a is taken as a constant, leading to a
higher investment rate for the larger groups of agents be-
cause they are selected more often. It seems reasonable
to allow this investment rate to depend on the size of the
groups of agents. As we proposed the democratic and dic-
tatorship models to simulate the demand process, we have
investigated numerically the variation of the average in-
vestment rate a as a function of the size s of the groups
of agents in these models. We showed that a stays nearly
constant for all values of s, but with huge fluctuations
as s increases. Also, for small values of s, a decreases to-
wards 0. We argue that taking the investment rate as a
constant in the EZ model is a good approximation, if the
democratic or dictatorship mechanisms are representative
of the demand process.
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